Extensions 1→N→G→Q→1 with N=C23×D11 and Q=C2

Direct product G=N×Q with N=C23×D11 and Q=C2
dρLabelID
C24×D11176C2^4xD11352,194

Semidirect products G=N:Q with N=C23×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D11)⋊1C2 = C22⋊D44φ: C2/C1C2 ⊆ Out C23×D1188(C2^3xD11):1C2352,77
(C23×D11)⋊2C2 = C23⋊D22φ: C2/C1C2 ⊆ Out C23×D1188(C2^3xD11):2C2352,132
(C23×D11)⋊3C2 = C22×D44φ: C2/C1C2 ⊆ Out C23×D11176(C2^3xD11):3C2352,175
(C23×D11)⋊4C2 = C2×D4×D11φ: C2/C1C2 ⊆ Out C23×D1188(C2^3xD11):4C2352,177
(C23×D11)⋊5C2 = C22×C11⋊D4φ: C2/C1C2 ⊆ Out C23×D11176(C2^3xD11):5C2352,187

Non-split extensions G=N.Q with N=C23×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D11).1C2 = C22⋊C4×D11φ: C2/C1C2 ⊆ Out C23×D1188(C2^3xD11).1C2352,75
(C23×D11).2C2 = C2×D22⋊C4φ: C2/C1C2 ⊆ Out C23×D11176(C2^3xD11).2C2352,122
(C23×D11).3C2 = C22×C4×D11φ: trivial image176(C2^3xD11).3C2352,174

׿
×
𝔽